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We demonstrate that the gravity wave background amplitude implies a robust upper bound on
the ratio: �=H�1

�
< e60, where � is the proper wavelength of 
uctuations of interest and H�1 is

the horizon at the end of in
ation. The bound holds as long as the energy density of the universe
does not drop faster than radiation subsequent to in
ation. This limit implies that the amount of
expansion between the time the scales of interest leave the horizon and the end of in
ation, denoted
by eN , is also bounded from above, by about e60 times a factor that involves an integral over the
�rst slow-roll parameter. In other words, the bound on N is model dependent { we show that for
vast classes of slow-roll models, N

�
< 67. The quantities, �=H�1 or N , play an important role in

determining the nature of in
ationary scalar and tensor 
uctuations. We suggest ways to incorporate
the above bounds when confronting in
ation models with observations. As an example, this bound
solidi�es the tension between observations of cosmic microwave background (CMB) anisotropies and
chaotic in
ation with a �4 potential by closing the escape hatch of large N (< 62).

98.80.Bp; 98.80.Cq; 98.65.Dx

The purpose of this short note is two-fold. First, we
brie
y review how 
uctuations predicted by in
ation [1]
are related to N , the number of e-folds between the time
the scales of interest leave the horizon [2] and the end of
in
ation (xI). (Note that N is not the total number of
e-folds of in
ation, a generally bigger number.) Second,
we derive an upper bound on N which should be used
when constraining in
ationary models. This is done in
two steps:

� we derive a robust, model-independent limit on ~N ,
de�ned to be the logarithm of the ratio of the
proper wavelength of cosmological modes to the
horizon at the end of in
ation (xII).

� From this, we infer a model-dependent bound on
N (xIII).

It is not uncommon to �nd in the literature a wide vari-
ety of assumptions made about N , and we �nd it timely
to point out the importance of this bound, especially in
light of improving observations. It should be emphasized
that while a fair fraction of our discussion is con�ned to
single-�eld slow-roll in
ation for the sake of simplicity,
the constraint on ~N in xII is quite general, applicable to
a much wider variety of in
ation models. This leads to a
short discussion in xIV where we observe that ~N might
be a better independent variable to adopt instead of N ,
when solving the in
ationary 
ow equations.
While revision of this paper was under way, a paper by

Liddle and Leach [3] appeared which reached very similar
conclusions.

I. A BRIEF REVIEW

For large classes of single-�eld, slow-roll in
ationary
models, the predictions for scalar and tensor 
uctuations

can be summarized as follows (to lowest order in slow-
roll) [4]:

ns � 1 = � ; r = �nT=2 = � (1)

where ns is the scalar spectral index, r is the tensor to
scalar ratio, and nT is the tensor spectral index. The
equality r = �nT=2 expresses the well-known consistency
relation [7].
The slow-roll parameters � and � are related to deriva-

tives of the Hubble parameter H as a function of in
aton
�eld value �:

� � m2
pl:

4�

�
H0
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2�
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H00

H
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�
H0

H

�2
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(2)

where the prime denotes di�erentiation with respect to
�. For a wave-mode of interest, equation (1) is to be
evaluated at horizon crossing during in
ation. This is
equivalent to evaluating equation (2) at the correspond-
ing �eld value � = �� (hereafter � is used to denote the
time of horizon exit), or, as is commonly done, at the
corresponding N :

N (��) �
Z te

t�

dtH =

p
4�

mpl:

�����
Z �e

��

d�=
p
�

����� (3)

where t is the proper time. Here N is the number of e-
folds between the horizon exit of the scale of interest (i.e.
t� or ��) and the end of in
ation (te or �e). The end of
in
ation is de�ned to be the time when slow-roll ends.
A hierarchy of 
ow equations tells us how the slow-roll

parameters depend on N [8]:

d�

dN
= �(� + 2�) ;

d�

dN
= �5�� � 12�2 + 2(2�) ; (4)

d(`�)

dN
= [(`� 1)�=2 + (` � 2)�](`�) + `+1�
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where ` ranges from 2 to in principle in�nity, and `�'s are
the higher order slow-roll parameters. In understanding
the dynamics of in
ation, it is also useful to remember
the equation of motion for �: _� = �m2

pl:H
0=(4�), and the

Friedmann equation: 3H2 = (8�=m2
pl:)[V + _�2=2], where

_� is the derivative of � with respect to proper time, and
V is the in
aton potential [9].
As expressed above, it is clear that N plays an im-

portant role in determining the properties of observable

uctuations. One can imagine a bound on N provides
useful information about the 
uctuations, although the
precise manner depends on the particular model under
consideration. To take a simple example, for chaotic in-

ation with a �p potential: N (��)+ p=4 = 4��2

�
=(pm2

pl:)
(where we have used the fact that � = 1 at the end of
in
ation), and � = p=(p+4N ), � = �(2+p)=(2N +p=2),
leading to (at the lowest order):

ns � 1 = �(2 + p)=(2N + p=2) ; r = p=(p+ 4N ) (5)

The predictions of chaotic in
ation then are quite sen-
sitive to the precise value ofN , and this dependence holds
for many in
ationary models [10]. This leads to an im-
portant question: what are the constraints on N? The
WMAP team [11] �xed N to be 50 and then proceeded
to show that their data excluded the �4 model. Refer-
ence [13] pointed out though that N need not be �xed at
50, and loosening this constraint correspondingly loosens
the constraints on the �4 chaotic in
ation model. It is
not uncommon in the literature to allow N to range up
to 70 (e.g. [5]).

II. A MODEL-INDEPENDENT BOUND ON ~N

First, we derive a bound on a slightly di�erent quan-
tity, which turns out to be more robust. Let us [6] de-

�ne e
~N � aeHe=k, where k is the comoving wavenumber

of interest, ae is the scale factor and He is the Hubble
parameter, both at the end of in
ation. Hereafter the
subscript e refers to the end of in
ation. In other words,

e
~N is the ratio of the physical wavelength (ae=k) to the

Hubble radius (H�1
e ) at the end of in
ation. It can be

calculated backwards from today: there is a symmetry
in the evolution of aH=k. During in
ation this ratio in-

creases from unity at horizon crossing to e
~N , and then af-

ter in
ation it falls back to unity once the scale re-enters
the horizon. The bound can be derived by extrapolating
backwards from today to get ae as a function of He, so
that ~N is solely a function of He and then arguing that
He is less than or equal to H�.
Let us now develop the argument in more detail to

make sure we arrive at a conservative bound. Naively,

one expects He = H0

1=2
r;0 a

�2
e , where 
r;0 = 4:2 �

10�5h�2 is the radiation density today in units of
the critical density, with h � H0= (100 km/s/Mpc)
parametrizing the Hubble constant today. Taking into

account changes in the number of relativistic species,
as well as the possibility of decoupled degrees of free-
dom (e.g. neutrinos today), one should use instead

He = H0

1=2
r;0 a

�2
e

�
(ge=g0)(g

S
0 =g

S
e )

4=3
�1=2

. Here, g is the
e�ective degrees of freedom that relates the energy den-
sity � to temperature T : � / gT 4, while gS relates the
entropy density s to T : s / gST 3. If g and gS were
identical, then the factor in square brackets would be
(g0=ge)1=6, smaller than (3:36=100)1=6 = 0:57 since the
standard model alone contains more than 100 relativis-
tic degrees of freedom at very high temperatures. The
di�erence between the g's [14] mitigates this to some ex-
tent and is somewhat model dependent; a conservative
bound follows from setting the coeÆcient to unity, so

ae < (H0=He)
1=2


1=4
r;0 . Thus,

e
~N =

aeHe

k
< 0:08

�
He

H0

�1=2�
H0

k

�
h�1=2: (6)

Using now the weak assumption that H�, the Hubble pa-
rameter in the early part of in
ation when the 
uctuation
leaves the horizon, is larger than He, we arrive at

e
~N < e60:9

�
H�

1015GeV

�1=2�
0:002Mpc�1

k

�
: (7)

Note that ~N is a function of scale k. The scale k = 0:002
Mpc�1 is well-measured by the CMB, so it is a convenient
pivot spot [11].
There is one possible loophole in Eq. (6). The end

of slow-roll (ae) is generally earlier than the time when
the universe �nally completes reheating to become radi-
ation dominated. Equation (6) assumes that this transi-
tion is instantaneous, but relaxing this assumption only
strengthens the inequality. To see this, for a given He,
de�ne a quantity ae�:e , which is the scale factor if one
were to extrapolate backward from the end of reheating
to a time when the Hubble parameter is He, as if the
universe remains radiation dominated between these two
times. With the weak assumption that the true Hubble
parameter should fall slower than a�2 between these two
times, one can see that ae < ae�:e . Combining this with

the relation ae�:e < (H0=He)
1=2
1=4

r;0 gives us back the
inequality in Eq. (6).
The gravity wave amplitude is proportional to H�. A

conservative bound (3�) from observations of the CMB
anisotropies is H� < 3:3� 1014 GeV [15]. Hence, Eq. (7)
constrains [12]

~N < 60 + ln

�
0:002Mpc�1

k

�
: (8)

The largest observable scale today corresponds to k =
H0, implying the largest possible observationally relevant
~N is 62 + ln(0:7=h).

We refer to this limit on ~N as the horizon ratio bound,
as it derives from comparing the horizon today with that
at the end of in
ation. An important assumption is that
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the Hubble parameter does not fall faster than a�2 af-
ter the end of in
ation i.e. the energy density does not
redshift faster than radiation. If, for instance, there is
an extended period of domination by a kinetic-energy-
dominated scalar �eld (H / a�3), the above bound
would be violated. On the other hand, periods of late en-
tropy production or secondary in
ation would only serve
to strengthen our bound. This caveat aside, our bound
is quite general { it is independent of the exact model of
in
ation.

III. UPPER BOUND(S) ON N

The amount of expansion between horizon exit and the

end of in
ation is given by eN = aeH�=k = e
~NH�=He.

Following equation (6), we see that

eN < 0:08

�
H0

k

�
h�1=2

h�H�

He

�1=2�
H�

H0

�1=2 i
(9)

The second term inside the square brackets can be
bounded using the gravity wave amplitude as before. The
�rst is the square root of the ratio of the Hubble param-
eter at exit and at the end of in
ation. This ratio can
be rewritten using equations (2) and (3): H�=He as a

function of N is given by exp [
RN

0
�(N 0)dN 0] [20]. Hence,

we obtain

N < 60 +
1

2

Z N

0

�(N 0)dN 0 + ln

�
0:002Mpc�1

k

�
(10)

The integral over � introduces a dependence on the in
a-
tion model to the bound on N . The weakest statement
one could make is that � < 1 during in
ation, and so the
integral has to be less than N , implying a bound on N
that is weaker than the one on ~N by a factor of 2. Im-
posing the requirement that in
ation has to end before
nucleosynthesis (temperature � 1 MeV) strengthens this
bound somewhat to N < 105+ ln (0:002Mpc�1=k). This
is our most general model-independent bound on N .
However, generic single-�eld slow-roll models (includ-

ing hybrid models as e�ective single-�eld models) likely
obey a signi�cantly stronger bound on N . We perform an
integration of the 
ow equations (equation 4) up to the
5th order in slow-roll (i.e. ` = 5), for a million randomly
generated models in the slow-roll parameter space, fol-
lowing the prescription of [5]. The trajectories of � can be
used to evaluate the integral in equation (10). We solve
for the resulting bound on N for each model, whose prob-
ability distribution is shown in Fig. 1. It appears there
is an upper limit on N :

N < 67 + ln (0:002Mpc�1=k) (11)

We do �nd, however, some evidence for a weak increase
in this upper bound as one truncates the slow-roll 
ow
equations at higher orders. We therefore recommend us-
ing equation (10) to evaluate the appropriate bound on
a case by case basis.

FIG. 1: The probability distribution of N -bound (eq. 10)
among a host of Monte Carlo realizations of in
ation models.
The spike around 60 is largely due to �xed points, models
where in
ation does not terminate at � = 1, but rather � � 0.
The inset shows two examples of how � 
ows with N (i.e. not
�xed points).

An instructive example to see why the model-
dependent correction to the N -bound is small is chaotic
in
ation with a �4 potential. From xI, we know � =

1=(1 + N ), and so
R N

0
�(N 0)dN 0 = ln (1 + N ). Plug-

ging this into equation (10) implies a bound of N <
62 + ln (0:002Mpc�1 =k). Such a modest N for the �4

model runs the danger of producing too much spectral tilt
and/or too high a tensor to scalar ratio (equation 5). Re-
cently, [21] showed that the combination of WMAP with
seven other CMB experiments rules out the �4 model at
3� unless N is larger than 66. This, together with our
bound, appears to rule out �4 chaotic in
ation. However,
we caution that [21] combined di�erent experiments as-
suming independence.

IV. DISCUSSION

In summary, we have derived a model-independent up-

per limit of about e
~N < e60 on the ratio of wavelength to

horizon size at the end of in
ation (equation 8). A cor-
responding model-dependent upper limit on eN , which
is the amount of expansion between horizon exit and the
end of in
ation, is given in equation (10). For vast classes
of slow-roll models, we �nd that this gives a bound of
N < 67.
The discussion so far points to two di�erent ways of

implementing the horizon-ratio bound. One is to use
equation (10) and evaluate the model-dependent correc-



4

tion on a case by case basis. The other is to bypass the
use of N altogether. It can be shown from equations (2)
and (3) that

(1 + �)
d

d ~N
=

d

dN
(12)

This can be used to rewrite the 
ow equations (4) us-

ing ~N instead of N as the independent variable. The
predictions for in
ationary 
uctuations can therefore be
expressed in terms of ~N in place of N . Our robust bound
on ~N can be implemented directly. We will explore this

further in a subsequent paper. This constraint is a useful
addition to the host of other constraints emerging from
cosmological observations [22].
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